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1. Consider a conservative mechanical system with n degrees of freedom that admits of a k-parameter 
group of symmetries. Based on general theorems of mechanics (see, for example, [1]), such systems 
admit of k + 1 first integrals: an energy integral 

H = l v r A ( r ) v  + V(r) = const (1.1) 
2 

and Noether integrals 

K = vrB(r) = c --- const (1.2) 

where v is the n-diraensional column vector of quasi-velocities and r is the m-dimensional column vector 
of quasi-coordinates, on which H and K depend (v e R n, r e M C R", n ~> dim M; M is the configuration 
manifold of  the s3naem), A(r) is the n × n kinetic energy matrix, which is positive-definite for any r 
M, V(r) is the potential, B(r) is the n × k coefficient matrix of the Noether integrals, e is the k-dimensional 
column vector of constants of  the integrals, and the superscript T stands for transposition. By Routh's 
theorem [2] (see also [3--6]), the critical points of the energy integral for fixed values of the other integrals 
correspond to steady motions (SM) of the system. Taking the structure of the integrals (1.1) and (1.2) 
into account, one can reduce the problem of determining these SM to that of seeking the critical points 
of the effective potential [7] 

We(r) = min H(v,r~ = V(r)+C(r)  
v / K ( v . r ) = c  

(1.3) 

( C ( r ) = l c ( D , r ) ) - ' c  r, D , r ) = B r ( r ) A - ' ( r ) B ( r ) )  

on the configuration manifold M. 
Thus, the SM of the system have the form 

r = r~, v = v~ (1.4) 

The quantities r~ are determined from the system 

~V¢ [r~ M =0  (1.5) 

and v: from the relations 

° . c r ( 1 . 6 )  v c = A-IBD -I Jr=re 
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By the Routh-Salvadori theorem on the stability of SM [2-6] and its inverse [8-11], the SM (1.4) are 
stable if the effective potential reaches a strict minimum at the point r~, and unstable if the determinant 
of the quadratic form 

82Wcl _r~ (1.7) 

is negative. Incidentally, if this determinant does not vanish, the index of the quadratic form (1.7) is 
known as the Poincar6 instability degree of the SM (1.4). 

By Routh's theorem, a steady motion is stable if the Poincar6 degree of instability is zero, and by 
Kelvin's theorem it is unstable if the degree is odd. When the degree of instability is even, gyroscopic 
stabilization may occur which is non-secular since it is disturbed by dissipative forces; one then says 
that the steady motion is unstable in the secular sense. 

2. Let us assume that the system, in addition to the potential forces that are derivatives of the function 
is subject to V(r), is subject to control forces which ensure that for all motions of the system, not only 
the SM considered in Section 1, the following relations are satisfied 

vrBD -I = to (2.1) 

where to is a k-dimensional row vector of constants. A motion for which condition (2.1) holds and r = 
const will be called a relative equilibrium (RE) of the system. Thus, the REs have the form 

r = r~, V = V L (2.2) 

The quantities r~, are determined from the system 

8W,,IrE M = 0 (20) 

° from the relations and vo 

Here 

v• = A-IBIr=r~ tot  (2.4) 

Ww(r) = V(r)-12(r), f~(r) = 1 / 2toD(r)to r (2.5) 

is the reduced potential of the system, which includes additional forces. 
By Lagrange's theorem on the stability of equilibria and its inverse (see [8, 9, 12]), the RE (2.2) is 

stable if the reduced potential (2.5) reaches a strict minimum at the point r~,, and unstable if the 
determinant of the quadratic form 

fi2Wolr=r~ (2.6) 

is negative. If this determinant does not vanish, the index of the quadratic form (2.6) may be defined, 
in a manner analogous to the Poincar6 degree, as the degree of instability of the RE (2.2). 

Thus, a RE is stable if the Poincar6 degree of instability is zero, and unstable if it is odd. If the degree 
of instability is even, the RE is unstable in the secular sense, but it may be stable in Lyapunov's sense 
in the case of gyroscopic stabilization. 

3. The problems of determining the steady motions and relative equilibria of systems with symmetry 
are in a sense equivalent. The rigorous formulation is as follows. 

Theorem 1. For any set c of constants of Noether integrals (for any set to of constants determining 
the velocity of motion of the system along the symmetry group), a set of constants to (a set of constants 
e) exists such that the solution of system (2.3) is identical with that of system (1.5): r~, = rg. 

Proof. Let us assume that the configuration space M is defined by the relations 

F ( r ) = 0  (F(r): R m =~R *~, ~ < m )  (3.1) 
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Then the quantities r~ and r~ are determined from the equations 

c31~¢/ar =0  (l~c = Wc + k r F )  

o ~ f f . / c 3 r = 0  (I~.. = W.. + k r F )  

(3.2) 

(3.3) 

respectively (where k is a g-dimensional column vector of undetermined Lagrange multipliers); these 
equations must be completed by inclusion of relationships (3.1). 

Let r = r~, k = X~ be a solution of system (3.1), (3.2), i.e. 

~)V c3C. .T~)F  
~- r+-~- r*^  ~-rffi0, F ( r ) = 0  (3.4) 

f o r r  = o o r~, k = kc. 
Set 

co = eD~' (3.5) 

Here and throughout, the subscript zero 
o r - -  re. 

Consider system (3.1), (3.3) 

means that the quantity in question is evaluated at 

av  
~)f~ + k r  ~ r  = 0, al~ F ( r ) = 0  (3.6) 

~)r ar  

from which the quantities r~ and k~, are determined. Taking the obvious identity 

~9 / G3r(DD -I ) E 0 

into consideration, one can express the second term of the first equation in system (3.6) as 

= D afi-I D 
ar ar  

Using formula (3.5), we conclude that this system is satisfied by r = r~, k = k~. Consequently, 
r~, = r~, k~, = k~ (provided that (3.5) holds). We can prove similarly that if r = r~,, k = k~ is a solution 

of system (3.6), then r~ = r~, k~ = k~,, where r~, k~ is a solution of system (3.4) and it is assumed 
that 

c = (oDo (3.7) 

The analogous correspondence with regard to the stability of SM and REs of systems with symmetry 
is not complete. More accurately, the following theorem holds. 

Theorem 2. If the reduced potential W,, has a strict local minimum at the point r = r~,, then the effective 
potential Wc has a strict local minimum at the point r -- r~, provided that c and to satisfy relationship 
(3.5) ((3.7)). 

o ~ o r o.  Proof. Suppose that condition (3.5) ((3.7)) is satisfied. Then rc r,, = In that case 

( c ( r ) -Wc( r  ) ) - ( W w ( r ) - W . ( r  ) ) = C - C o + f i - ~ o =  

= 2 e ( D  -t -Dol  )cr  + I to(D-Do)coT = 

= I m ( D o D - I D o - 2 D  o +D)to r = I x  D-ix r ~>0 (x =m(D o - D ) )  
2 
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Consequently, We(r) - Wc(r °)/> W,o(r) - W,,(r°), i.e. if Wo,(r) > Wo,(r°), then We(r) > We(r°). 

Corollary. If a RE is stable in the secular sense, the corresponding SM is also stable in the secular 
sense. 

Remark. Conditions for the stability of SM cannot be more restrictive than the stability conditions for the 
corresponding REs, but they may be more inclusive. 

Note that the converse is not necessarily true. In particular, a steady motion may be stable in the secular sense 
even if the corresponding RE is unstable (see the example below). 

Let us call a steady motion (RE) trivial if r~ is independent of c ( r~  is independent of to). 
Obviously (see (3.4) and (3.6), respectively), trivial SM (TSM) and trivial REs (TREs) satisfy the 

relations 

O V . . r  OF ^ 
-~-r*^ -~r=U, F ( r ) = 0  (3.8) 

that is, they are always identical. When that happens, we have 

~C/~r=O,  ~ / ~ r = O  (3.9) 

on TSM and TREs, identically with respect to c and to, respectively. 

Theorem 3. The indices of the quadratic forms (1.7) and (2.6) for TSM and the corresponding TREs 
are identical. 

The proof follows in an obvious manner from (3.5)-(3.9). 

Corollary 1. The degree of instability of a TSM is always the same as that of the corresponding TRE. 
Let us call a steady motion (RE) non-degenerate if the determinant of the matrix of the second 

variation of We (W,o) on the steady motion (on the RE) does not vanish; otherwise we shall say that 
the steady motion (RE) is degenerate. 

Corollary 2. The conditions for secular stability of non-degenerate TSM and the corresponding TREs 
are always the same. 

Remarks. 1. The conditions for stability of degenerate TSM cannot be more restrictive than those for the stability 
of the corresponding degenerate TREs, but they may be more inclusive (see example). 

2. The degree of instability of non-degenerate non-trivial SM cannot exceed that of the corresponding non-trivial 
REs, but they may be smaller (see example). 

3. If r and s are true positional and cyclic coordinates and v = (r, s), the results presented here agree with previously 
published results [13-17]. 

4. The results presented above can be extended in a natural way to the case of dissipative systems 
that admit of first integrals (1.2) and satisfy the energy relation dH/dt <~ 0 (instead of the energy integral 
(1.1)), and also to the case in which the equations ~iWc = 0 (~Wto = 0) define not a point r = r°(c) 
(r = r°(to)) but a compact set M0(c) C M (M0(to) C M). 

Indeed, for dissipative systems, proceeding as before, one can introduce an effective potential We(r) 
and reduced potential W,~(r) by formulae (1.7) and (2.5), respectively. When that is done, it follows 
from earlier results [18, 19] that the sets on which ~SWc = 0 or ~Wo, = 0 define invariant sets (ISs) of 
the free or restricted dissipative system, respectively. If it is also true that the set M0(c) (M0(to)) is 
compact and provides function We(r) (Wo,(r)) with a strict local minimum, then Mo(c) ((M0(to)) is a 
stable IS [18, 19]. 

Analogous reasoning implies the following theorems. 

Theorem 4. For any set c of constants of Noether integrals (for any set of constants to defining the 
velocity of motion of the system along its symmetry group), a set of constants to (a set of constants c) 
exists such that the set M0(c) of solutions of system (1.5) is identical with the set M0(to) of solutions of 
system (2.3). 

Theorem 5. If the reduced potential Wto has a strict local minimum on the set M0(to), then the effective 
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potential ~ has a strict local minimum on the set Mo(e), provided that c and to satisfy relationship 
(3.5) (or (3.7)). 

Coroll,~ry. If the set M0(to) is stable in the secular sense, then the set Mo(C) is also stable in the secular 
sense. 

Note  that  Wc(r ) (W,~(r)) will certainly have a strict local min imum on the set M0(c) (M0(to)), provided 
that  the second var ia t ion 82Wc(Mo(c)) (62W, o(M0(to)) is a posit ive-definite function of  the deviations 
of  the vec tor  r f rom the IS Mo(c) (M0(to)). 

As  before ,  we shall call an IS Mo(c) (M0(to)) trivial (TIS)  if it does not  change when  the p a r a m e t e r  
c ( the p a r a m e t e r  d~) is varied. Obviously, a TIS  M0(c) cor responds  to the TIS  Mo(to) and conversely. 
We thus have the following theorem.  

Theorem 6. The indices of the quadratic forms (1.7) and (2.6) for a TIS M0(c) and the corresponding 
TIS M0(to) are identical. 

Corollaries. 1. A TIS M0(c) and the corresponding TIS M0(to) have the same degrees of instability. 
2. The conditions for secular stability of a non-degenerate TIS M0(e) and for that of the corresponding 

TIS M0(to) are always the same. 

Remark. If a compact invariant set Mo(c) (M0(to)) is isolated for fixed values of the parameters c (to) from the 
set H ~  0, then, by earlier results [18, 19], this set is partially asymptotically stable (unstable) provided that it provides 
(does not provide) the function We(r) (Wto(r)) with a strict local minimum (even a non-strict minimum). In that 
case the TIS M0(e) and M0(to) are either both partially asymptotically stable or both unstable. 

5. We will now illu:;trate the results, applying them to the motion of a heavy dynamically symmetric sphere along 
a horizontal plane with sliding friction. 

Let m be the sphere mass, 0=  diag (A,A, C) be the central inertia tensor, a be the displacement of the geometrical 
centre O of the sphere from its mass centre G, r be the radius of the sphere, y be the unit vector of the upward 
vertical, e be the unit vector of the dynamic axis of symmetry of the sphere, which points along the vector GO, v 
be the velocity of the sphere's mass centre, to be the angular velocity of rotation of the sphere about its mass centre, 
and g be the acceleration due to gravity. 

If the only forces acting on the sphere are gravity and sliding friction, the system admits of an energy relation 

d H ~  0 H = / (my,v) + l ( o t o , t o ) -  mg(p,y) 
dt ' 2 2 

and a Jellett integral 

J = (Oto, p) = r.i 

where p = --ry + ae =: GK, K is the point at which the sphere touches the support plane andj is an arbitrary constant. 
The effective potential of the system is defined by the following relation [20] 

j2 
Wj = min HI j_ r, = - toga cos O + 1 + const 

v,to - J  2 Asin2 O+C(cosO-e . )  2 

= a/r, cos 0 = (y, e) 

A minimum is reached at v = 0, to = too#, where 

r 2 
~ = o ( j ) = ~ j  (5.1) 

If it is assumed that (to, p)r/(p, p) = to on all motions of the sphere, where to is an arbitrary constant, then the 
reduced potential is defined by 

Wt~ = V -  Tlv_0.w=~/, = -mgacosO - ~ ( A  sin 2 "O + C(cos 0 - e) 2 )0)2 

By the results presented previously, the set of critical points O = 0°(3") of Wj coincides with the set of critical 
points O = O°(co) of I ~  if the constantsj and co are related as (see (5.1)) 

j = (Asin20 ° + C(cosO ° -~)2)o (5.2) 
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Obviously, the set of critical points of Wo, contains two trivial branches "01 = 0, "02 = ~ and one non-trivial branch 
"03 = "03(t02). The latter is defined by 

to2= mga ~ 8 = A ~  (5.3) 
C(e-(1 - 8)cos,0) k c )  

The critical points "01 = 0 and "02 = n correspond to vertical rotations of the sphere and the set of critical points 
,0 = 03 corresponds to regular precessions of the sphere. The function We. then has a minimum (maximum) at the 
points "01, '02 and "03 under the conditions 

Cto2( I - 6 - e) + toga > 0 (< 0) 

Cto2( I - 8 + E:) - toga > 0 (< 0) 

~ i - I  > 0  (<0) 

(5.4) 

(5.5) 

(5.6) 

The set of critical points of Wj also contains two trivial branches 01 ~- 0 and 02 --- ~ and at most two non-trivial 
branches 03,a = "03,4(j2). The latter are defined by the relation 

j2 = Cmga (~sin2 0 + (cos O - ~)2 )2 (5.7) 
(8 -1)cosO+e  

Note that Eq. (5.3) is uniquely solvable for O(to2), while Eq. (5.7) may have at most two groups of solutions O(j2); 
in the configuration space S z, however, these relations (taking (5.2) into account) define the same set of critical 
points of the functions W~ and Wj, respectively. 

By our previous results, the conditions 

j2 
C ( I - e )  4 ( I - ~ - e . ) + m g a > O  (<0) (5.8) 

j2 
C(l+e)  4 ( l - 8 + E ) - r a g a > O  (<0) (5.9) 

obtained from (5.4) and (5.5) provided that O ° = 0 and O ° = n, respectively (see (5.2)), define conditions for a 
minimum (maximum) of Wj at the points O1 = 0 and 02 --- n, respectively. Analogous conditions were obtained 
previously (see, for example, [20]) by direct investigation of the function Wj. 

As to conditions (5.6), it follows from our results that for ~i > 1 the function Wj will certainly have a minimum 
on the unique (for ~ > 1) non-trivial branch 03 = "03(/2). However, this function may also have a minimum when 
/i < 1 (see, for example, [20]), unlike the function W,. 

Thus, the stability of vertical rotations of a free heavy dynamically symmetric sphere on a plane with sliding friction 
(the stability of a TSM) is defined both by (5.4) or (5.5) (and then to is the angular velocity of rotation) and by 
(5.8) or (5.9) (and thenj is the constant of Jellett integral, normalized to the sphere radius). Regular precessions 
of the sphere (non-trivial SMs) are always stable if the inertia ellipsoid is prolate along the axis of symmetry (see 
(5.6)), but it may be stable even if the ellipsoid is oblate. At the same time, regular precessions of the sphere, whose 
motion satisfies the relations (t~, p)r/(p, p) = to, are stable (unstable) if the inertia ellipsoid of the sphere is prolate 
(oblate). 

It is noteworthy that in investigating the motion of a top on a plane with friction one cannot directly use existing 
results [13-17], because, first, the system is dissipative, and, second, apart from zero-dimensional invariant sets 
(rotations about the axis of symmetry), the system also admits of one-dimensional invariant sets (regular precessions). 
The fact that the system is dissipative does not play an essential part and is readily taken into consideration, whereas 
if one abandons the invariant description,of the motion of the top and instead transforms to some kind of generalized 
coordinates, the motions of the system cannot all be described in a uniform setting, and it becomes much more 
difficult to investigate the problem. Indeed, one cannot investigate vertical rotations in terms of Euler angles, while 
Krylov angles oblige one to disregard regular precessions. 

This research was carried out  with financial support  f rom the Russian Foundat ion  for Basic Research 
(93-013-16242) and the International  Science Foundat ion  (MAK000,  MAK300) .  
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